Transduction of donor hematopoietic stem-progenitor cells with Fas ligand enhanced short-term engraftment in a murine model of allogeneic bone marrow transplantation.

نویسندگان

  • Katharine A Whartenby
  • Erin E Straley
  • Heeje Kim
  • Frederick Racke
  • Vivek Tanavde
  • Kevin S Gorski
  • Linzhao Cheng
  • Drew M Pardoll
  • Curt I Civin
چکیده

Fas-mediated apoptosis is a major physiologic mechanism by which activated T cells are eliminated after antigen-stimulated clonal expansion generates a specific cellular immune response. Because activated T cells are the major effectors of allograft rejection, we hypothesized that genetically modifying allogeneic bone marrow (BM) cells prior to transplantation could provide some protection from host T-cell attack, thus enhancing donor cell engraftment in bone marrow transplantation (BMT). We undertook studies to determine the outcome of lentiviral vector-mediated transduction of Fas ligand (FasL) into lineage antigen-negative (lin(-)) mouse BM cells (lin(-) BMs), in an allogeneic BMT model. FasL-modified lin(-) BMs killed Fas-expressing T cells in vitro. Mice that received transplants of allogeneic FasL(+) lin(-) BMs had enhanced short-term engraftment, after nonmyeloablative conditioning, as compared to controls. We observed no major hepatic toxicity or hematopoietic or immune impairment in recipient mice at these time points. These results suggest potential therapeutic approaches by manipulating lymphohematopoietic stem-progenitor cells to express FasL or other immune-modulating genes in the context of BMT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENE THERAPY Transduction of donor hematopoietic stem-progenitor cells with Fas ligand enhanced short-term engraftment in a murine model of allogeneic bone marrow transplantation

Fas-mediated apoptosis is a major physiologic mechanism by which activated T cells are eliminated after antigen-stimulated clonal expansion generates a specific cellular immune response. Because activated T cells are the major effectors of allograft rejection, we hypothesized that genetically modifying allogeneic bone marrow (BM) cells prior to transplantation could provide some protection from...

متن کامل

Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation

Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...

متن کامل

Studies on the hyperthermic sensitivity of the murine hematopoietic stem cell compartment. II. Heat effect on donor stem cells with long-term repopulating ability.

Variations in hyperthermic sensitivity among different hematopoietic progenitor and stem cell populations of the bone marrow have been previously described for clonogenic subsets responsible for short-term hematopoiesis. However, less is known of the heat sensitivity of more primitive stem cells capable of long-term repopulation in irradiated recipients. In the present study, control and heat-t...

متن کامل

تاثیر آشیانه‌های جفتی شبیه‌سازی شده با داربست پلی لاکتیک اسید در تکثیر سلول‌های بنیادی خونساز مشتق از بافت جفت انسانی

Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...

متن کامل

Dysfunction of Bone Marrow Vascular Niche in Acute Graft-Versus-Host Disease after MHC-Haploidentical Bone Marrow Transplantation

Acute graft-versus-host disease (aGvHD) is the most common complication of allogeneic hematopoietic stem cell transplantation (HSCT), which is often accompanied by impaired hematopoietic reconstitution. Sinusoidal endothelial cells (SECs) constitute bone marrow (BM) vascular niche that plays an important role in supporting self-renewal capacity and maintaining the stability of HSC pool. Here we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 100 9  شماره 

صفحات  -

تاریخ انتشار 2002